Practice set 3

For Questions 1 to 11, select the correct answer A, B, C or D.

1 The quotient rule for differentiating $y = \frac{u}{x}$ is:

A
$$y' = \frac{uv' - vu'}{v^2}$$

B $\frac{u'v - v'u}{v^2}$
C $y' = u'v + v'u$
D $y' = uv' + vu'$

2 If $f(x) = x^2$ and g(x) = 2x + 1, the composite function g(f(x)) is given by:

A
$$(2x+1)^2$$

B $(2x)^2+1$
C $2x+1^2$
D $2x^2+1$

- **3** The number of employees, N, is inversely proportional to the time, t, it takes to do a stocktake. What is the equation showing this information?
- **B** N = t + k **C** $N = \frac{k}{t}$ **D** $N = \frac{t}{k}$ **A** N = kt**4** Find the derivative of $(3x - 2)^8$.
 - **A** $(3x-2)^7$ **B** $8(3x-2)^7$ **C** $8x^7(3x-2)$ **D** $24(3x-2)^7$

5 Find the probability of drawing out a blue and a white ball from a bag containing 7 blue and 5 white balls if the first ball is not replaced before taking out the second.

C $\frac{1225}{17424}$ **D** $\frac{35}{66}$ **A** $\frac{70}{121}$ **B** $\frac{70}{144}$

6 The equation of a circle with radius 3 and centre (-1, 4) is: **B** $(x-1)^2 + (y+4)^2 = 9$ **A** $(x-1)^2 + (y+4)^2 = 3$

D $(x+1)^2 + (y-4)^2 = 3$ 7 If $f(x) = 2x^2 - 3x + 1$ and $g(x) = (x + 3)^2$ find the degree of y = f(x)g(x). **B** 4 **A** 2 **C** 3 D 5

8 Find the domain of $f(x) = \frac{2}{x+7}$.

Α	$(-\infty, 7) \cup (7, \infty)$	В	$(-\infty, -7) \cup (-7, \infty)$
С	$(-\infty,7)\cap(7,\infty)$	D	$(-\infty, -7) \cap (-7, \infty)$

10

9 If the displacement of a particle is given by $x = 2t^3 + 6t^2 - 4t + 10$, the initial velocity is:

С

12

A -4 В

C $(x+1)^2 + (y-4)^2 = 9$

D 14 **10** In a group of 25 students, 19 catch a train to school and 21 catch a bus. If one of these students is chosen at random, find the probability that the student only catches a bus to school.

A
$$\frac{6}{25}$$
 B $\frac{21}{25}$ **C** $\frac{3}{5}$ **D** $\frac{3}{20}$

11 Conditional probability P(A|B) is given by:

A
$$\frac{P(A \cup B)}{P(B)}$$

B $\frac{P(A \cap B)}{P(A)}$
C $\frac{P(A \cup B)}{P(A)}$
D $\frac{P(A \cap B)}{P(B)}$

12 Differentiate:

a
$$y = x^9 - 4x^2 + 7x + 3$$

b $y = 2x(x^2 - 1)$
c $y = 3x^{-4}$
d $y = \frac{5}{2x^5}$
e $y = \sqrt{x^3}$
f $y = (2x + 3)^7$
g $y = \frac{1}{(x^2 - 7)^4}$
h $y = \sqrt[3]{5x + 1}$
i $y = \frac{5x^2 - 1}{2x + 3}$

13 Sketch the graph of:

a
$$y = \frac{4}{2x-4}$$

b $P(x) = x^3 + x^2 - 2x$
c $y = |x-1|$
d $x^2 + y^2 = 25$
e $f(x) = -\sqrt{1-x^2}$

- 14 In a class of 25 students, 11 play guitar, 9 play the piano, while 8 don't play either instrument. If one student is selected at random from the class, find the probability that this student will play:
 - **a** both guitar and piano
 - **b** neither guitar or piano
 - **c** only guitar.
- **15** The volume in litres of a rectangular container that is leaking over time *t* minutes is given by $V = -t^2 + 4t + 100$. Find:
 - **a** the initial volume
 - **b** the volume after 10 minutes
 - **c** the rate of change in volume after 10 minutes
 - **d** how long it will take, to 1 decimal place, until the container is empty.
- **16 a** Find the equation of the tangent to the curve $y = x^3 3x$ at the point P = (-2, -2).
 - **b** Find the equation of the normal to $y = x^3 3x$ at *P*.
 - **c** Find the point *Q* where this normal cuts the *x*-axis.

17	Two dice are thrown. Find tha double la total of 6	e probability of throwin b any double e a total of at least 8	g: c at least one 3
18	The function $f(x) = ax^2 + bx + c$ has a tangent at $(1, -3)$ with a gradient of -1 . It also passes through (4, 3). Find the values of <i>a</i> , <i>b</i> and <i>c</i> .		
19	Find the equation of the circle with centre $(-2, -3)$ and radius 5 units.		
20	Find the centre and radius of a $x^2 + 6x + y^2 - 10y - 15 =$	the circle with equation 0 b x^2	: + $10x + y^2 - 6y + 30 = 0$
21	$f(x) = 3x^2 - 4x + 9.$ a Find $f(x + h) - f(x)$. b Show by differentiating	from first principles that	f'(x) = 6x - 4.
22	 a Find the equation of the tangent to the curve y = x³ - 2 at the point P(1, -1). b The curve y = x³ - 2 meets the y-axis at Q. Find the equation of PQ. c Find the equation of the normal to y = x³ - 2 at the point (-1, -3). d Find the point R where this normal cuts the x-axis. 		
23	100 cards are numbered from 1 to 100. If one card is chosen at random, find the probability of selecting:an even number less than 30an odd number or a number divisible by 9.		
24	A bag contains 5 white, 6 yellow and 3 blue balls. Two balls are chosen at random from the bag without replacement. Find the probability of choosing: a 2 blue balls b a white ball and a yellow ball		
25	If Scott buys 10 tickets, find the probability that he wins both first and second prizes in a raffle in which 100 tickets are sold.		
26	 Two dice are rolled. Find the a of 8 d of 4 or 5 	probability of rolling a tb less than 7e that is an odd num	cotal: c greater than 9 aber.
27	For the Venn diagram, find: a $P(A B)$	b $P(B A)$	A B 5 3 7

366

- **28** A bag contains 5 red, 7 blue and 9 yellow balls. Cherylanne chooses 2 balls at random from the bag. Find the probability of that she chooses:
 - **a** blue given the first ball was yellow
 - **b** red given the first ball was blue.
- **29** If $f(x) = 2x^3 5x^2 + 4x 1$, find f(-2) and f'(-2).
- **30** a Find the gradient of the secant to the curve $f(x) = 2x^3 7$ between the point (2, 9) and the point where:
 - **i** x = 2.01 **ii** x = 1.99
 - **b** Hence estimate the gradient of the tangent to the curve at (2, 9).
- **31** Sketch the gradient function for each curve.

- **32** The area of a community garden in m^2 is given by $A = 7x x^2$ where x is the length of the garden.
 - **a** Find the area when the length is:
 - **i** 3 m **ii** 4.5 m.
 - **b** Find the length when the area is 8 m^2 , to 1 decimal place.
 - **c** Sketch the graph of the area function.
 - **d** Find the maximum possible area.
- **33** Solve graphically:

$$|x+2| = 3.$$

- **34** If $f(x) = x^2 1$ and $g(x) = x^3 + 3$, find:
 - **a** the degree of y = f(x)g(x)
 - **b** the leading coefficient of y = f(x)g(x)
 - **c** the constant term of y = f(x)g(x).
- **35** The displacement x cm of an object moving along a straight line over time t seconds is given by $x = 2t^3 13t^2 + 17t + 12$.
 - **a** Find the initial displacement, velocity and acceleration.
 - **b** Find the displacement, velocity and acceleration after 2 seconds.

36 If $A = \{1, 3, 4, 5\}$ and $B = \{2, 3, 5, 6\}$:

- **a** find $A \cup B$
- **b** find $A \cap B$
- c draw a Venn diagram showing this information.

37 Find the equation of the tangent to the curve $y = 3x^2 - 6x + 7$ at the point (2, 7).

- **38** Find the derivative of:
- **b** $y = \sqrt{x^3}$ **c** $y = \frac{1}{r^2}$ **d** $y = \frac{(7x+4)^2}{3r-1}$ **a** $y = x^{-3}$ **e** $y = (5x^2 + 1)(2x - 3)^4$ **f** $y = (3x + 1)^5$ **g** $y = \sqrt{2x - 1}$ **39** $f(x) = x^2 - 2$ and g(x) = 2x - 1. Find the equation of: a ii $\gamma = f(x)g(x)$ $i \quad y = f(x) + g(x)$ iv $y = \frac{g(x)}{f(x)}$ $iii \quad y = g(x) - f(x)$ **b** Sketch the graph of: ii $\gamma = g(-x)$ $i \quad y = -f(x)$ iii y = -g(-x)**40 a** Find the centre and radius of the circle $x^2 + 2x + y^2 - 6y - 6 = 0$. **b** Find its domain and range. **41** Find the equation of the normal to the curve $y = x^2 - 4x + 1$ at the point (3, -2). **42** Differentiate: **a** $y = 2x^4 - 5x^3 + 3x^2 - x - 4$ **b** $y = \frac{1}{2x^5}$ **c** $y = \sqrt{x}$ **e** $y = 3x^4(2x-5)^7$ **f** $y = \frac{5x+7}{3x-2}$ **d** $\gamma = (2x - 3)^7$ **43** If $f(x) = x^2 + 1$ and g(x) = x - 3, find the degree of: **a** f(x) + g(x)**b** f(x)g(x)44 A coin is tossed and a die thrown. Find the probability of getting: a head and a 6 b a tail and an odd number. **45** Find the domain and range of: **b** $\gamma = 1 - x^2$ **a** $y = x^3 + 1$ **d** $y = \frac{4}{x+2}$ **c** $x^2 + 4x + y^2 - 2y - 20 = 0$ **46** If $f(x) = x^3$ and g(x) = 2x + 5, find: **a** f(g(x))**b** g(f(x))

47 The table below shows the results of an experiment in tossing 2 coins.

Result	Frequency
HH	24
ΗT	15
TH	38
ΤT	23

- **a** Add a column for relative frequencies as fractions.
- b From the table, find the probability of tossing:i 2 tailsii a head and a tail in any order
- c What is the theoretical probability of tossing:i 2 tails?ii a head and a tail in any order?
- **48** Find the equation of the tangent to the curve $y = x^3 7x + 3$ at the point where x = 2.

49 Find in exact form:

- **a** the length of the arc
- **b** the area of the sector

cut off by an angle of 40° at the centre of a circle with radius 4 cm.

b *f*(0)

- **50** If f(x) = |x| 2 find: **a** f(-2)
- 51 The probability that Despina passes her first maths test is 64% and the probability that she will pass both the first and second tests is 48%. Find the probability that Despina passes the second test given that she passes the first test.
- **52** If P(L) = 45%, $P(L \cap M) = 5.4\%$ and P(M) = 12%, show that *L* and *M* are independent.
- **53** Given P(X) = 0.26, P(Y) = 0.15 and $P(X \cup Y) = 0.371$, show that *X* and *Y* are independent.
- **54** State whether events *A* and *B* are mutually exclusive if P(A) = 0.18, $P(A \cup B) = 0.5$ and P(B) = 0.32.

c f(m+1)

