Practice set 4

For Questions 1 to 5, select the correct answer A, B, C or D.

- 1 Find the amplitude and period of $y = 5 \sin 3x$.
 - A Amplitude 3, period 5 B Amplitude 5, period 3
 - **C** Amplitude 5, period $\frac{2\pi}{3}$ **D** Amplitude 3, period $\frac{2\pi}{5}$
- **2** The table is a discrete probability distribution.

x	1	2	3	4	5	6
P(X = x)	0.14	0.16	0.08	0.14	0.31	0.17

Find $P(X \le 4)$.

3 Find the exact value of $\sin 135^\circ + \cos 120^\circ$.

A	$\frac{\sqrt{2}-\sqrt{3}}{2}$	В	$\frac{\sqrt{2}+1}{2}$
C	$\frac{\sqrt{2} + \sqrt{3}}{2}$	D	$\frac{\sqrt{2}-1}{2}$

4 Which statement is the same as $3^x = 7$? There is more than one answer.

A $x = \log \frac{7}{3}$ **B** $\log_3 x = 7$ **C** $\log_3 7 = x$ **D** $x = \frac{\log 7}{\log 3}$

5 The derivative of $x^2(2x+9)^2$ is:

- **A** 4x(2x+9) **B** $2x(2x+9)^2 + 2x^2(2x+9)$ **C** 2x(2x+9)**D** $2x(2x+9)^2 + 4x^2(2x+9)$
- **6** Differentiate:
 - **a** $y = e^{x} x$ **b** $y = 3e^{x} + 1$ **c** $y = (e^{x} - 2)^{4}$ **d** $y = e^{x}(4x + 1)^{3}$ **e** $y = \frac{e^{x}}{5x - 2}$ **f** $y = 5e^{7x}$

487

7 A function is given by

$$f(x) = \begin{cases} \frac{x+1}{8} & \text{for } x = 0, 1, 2\\ \frac{x-2}{4} & \text{for } x = 3 \end{cases}$$

a Find:
i $f(0)$ **ii** $f(3)$
b Show that $f(x)$ is a probability function.

8 Find $\log_5 \frac{1}{25}$.

9 The table represents a probability distribution.

	x	1	2	3	4	5	6					
	P(X = x)	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{5}$					
	Find:											
	a $P(X =$	2)			b P((X < 4)			С	$P(X \ge 2)$		
	d <i>P</i> (4 ≤	$X \le 6)$			e P($(1 \le X \cdot$	< 5)					
10	Simplify:											
	a tan (1	80° – (Ə)		b sin	n (0)			C	$\cos(2\pi - \theta)$		
11	For $0 \le x \le 2\pi$ sketch the graph of:											
	a $y = 2$	$\sin 4x$			b y =	$= \tan \frac{x}{2}$	-		C	$y = -\cos x$		

12 For each random variable *X*, write the set of possible values.

- **a** The number of rolls of a die until a 6 turns up
- **b** The number of red cards selected when choosing 12 cards from a bag containing 15 red and 15 black cards
- **c** The first rainy day in January.
- **13** Solve $\log_x \frac{1}{16} = 4$.

488

- **14** The population of a city over *t* years is given by the formula $P = 100\ 000e^{0.71t}$. After how many years, to 1 decimal place, will the population become 1 million?
- **15** A bag contains 7 white and 6 blue cards. Create a probability distribution table for the number of blue cards selected when randomly selecting 3 cards:
 - **a** with replacement **b** without replacement.

16 If $\tan x = -\frac{4}{3}$ and $\cos x > 0$, evaluate $\sin x$ and $\cos x$.

- **17** Solve for $0 \le x \le 2\pi$:
 - **a** $2 \cos x + 1 = 0$ **b** $\tan^2 x = 1$ **c** $\cos x = 0$ **d** $\sin 2x = \frac{1}{2}$

18 This table represents a probability distribution.

x	1	2	3	4	5
P(X=x)	0.16	0.23	0.22	a	b

If E(X) = 3.04, evaluate *a* and *b*.

19 Find the expected value, variance and standard deviation for the probability distribution below.

x	0	1	2	3	4
P(X=x)	0.2	0.1	0.3	0.1	0.3

- **20** Find the exact value of:
 - **a** $\cos \frac{7\pi}{4}$ **b** $\sin \frac{4\pi}{3}$ **c** $\tan \frac{5\pi}{6}$
- **21** Draw a discrete probability distribution table for the number of tails when tossing 3 coins.
- **22** Sketch the graph of:

a $y = \log_3 x$ **b** $y = 3 \log_2 x - 1$

23 a Write $\log_e x$ as an equation with x in terms of y.

b Hence find the value of *x*, to 3 significant figures, when y = 1.23.

```
24 Solve 7^{2x} = 3.
```

25 This table shows a discrete probability distribution. Evaluate *k*.

x	0	1	2	3	4
P(X=x)	2 <i>k</i>	3 <i>k</i>	4k - 2	5k - 1	6k

- **26** State whether each probability distribution is uniform.
 - **a** Number of heads when tossing 2 coins
 - **b** Number of heads when tossing a coin
 - c Number of even numbers when rolling one die
 - **d** Number of 1s when rolling one die.

27 State whether each function is a probability function.

a
$$f(x) = \frac{x+1}{10}$$
 for $x = 0, 1, 2, 3$
b $f(x) = \begin{cases} \frac{x}{11} & \text{for } x = 1, 2\\ \frac{x-1}{22} & \text{for } x = 3, 4, 5 \end{cases}$

28 Solve for $0^{\circ} \le x \le 360^{\circ}$:

a $\tan x = -1$ **b** $2 \sin x = 1$ **c** $2 \cos^2 x = 1$ **d** $\tan 2x = \sqrt{3}$

29 Evaluate, to 2 decimal places where appropriate.

a	log ₂ 16	b	$\log_3 3$	c	$\log_4 2$
d	$\log_{10} 109.7$	е	ln 43.1	f	$\log_3 11$

30 Sketch the graph of:

a $y = e^{-x}$

b
$$y = 2e^{3x} + 1$$

- **31** The probability of winning a game is 65% and the probability of losing the game is 12%.
 - **a** Draw a probability distribution table showing 0 for a loss, 1 for a draw and 2 for a win.
 - **b** Find the expected value and variance.
- **32** Find the equation of the tangent to the curve $y = 5e^x$ at the point $(2, 5e^2)$.
- **33** In a game, Faizal pays \$1 to toss 2 coins. He wins \$2 for 2 heads or 2 tails and loses \$1 for a head and a tail.
 - **a** Find the expected value for this game.
 - **b** How much would you expect Faizal to win or lose in the long term?
- **34** A spinner has the numbers 1 to 8 equally placed around it.
 - **a** Draw a probability distribution table for the spinner.
 - **b** Is it a uniform distribution?
 - Find the probability of spinning a number:
 i greater than 4
 ii 3 or less
 iii at least 4
 - **d** Find the expected value of the spinner.

- **35 a** Show that the points (1, 27%), (2, 31%), (3, 28%) and (4, 14%) represent a discrete probability function.
 - **b** Find E(X) and Var(X).

36 For the following probability distribution, evaluate *k*.

	x	1	2	3	4	5	6			
	<i>p</i> (<i>x</i>)	$\frac{5}{16}$	k	$\frac{1}{16}$	$\frac{3}{8}$	$\frac{1}{16}$	$\frac{1}{8}$			
37	Simplify a 5 +	: 5 tan ² .	x				Ь	$\frac{(1+si)}{s}$	$\frac{(n x)(1 - x)}{(n x \cos x)}$	$\frac{\sin x}{x}$
38	Find the a tan	exact 150°	value o	of:	b	cos (–	45°)		c	sin 240°
39	Find the a x^2 –	value $2x - 3$	of x : = 0		b	1 < 2 <i>x</i>	$c-3 \leq$	7	c	3x+1 = 4
40	Find the	centre	and r	adius c	of the	circle <i>x</i>	$x^{2} - 4x$	$+y^2+6y$	-3 = 0.	
41	Amanda	leaves	home	and cy	cles s	outh fo	r 3.6 k	m. She tł	nen turn	is and cycles for

- 5.4 km on a bearing of 243°.
 - **a** How far is Amanda from her house, to 1 decimal place?
 - **b** What is Amanda's bearing from her house, to the nearest degree?

