STD 1: Measurement (Std 1), M1 Applications of Measurement (Y11) Energy and Mass (Std 1)

Teacher: Kirtana Hariharan
Exam Equivalent Time: 49.5 minutes (based on HSC allocation of 1.5 minutes approx. per mark)

IMPORTANT FEATURES AND TIPS FROM 2UG EXAM HISTORY

- MS-M1 Energy and Mass introduces some brand new content (calorie, joule and tonne units), as well as covering previous content such as electricity consumption (kilowatt hours) which was in the old Gen2 focus study "Resources".
- The syllabus documents provide excellent direction for question content and style in the new topic areas. This has been reflected in the database through supplementary questions written to beef up this deficit area.

ANALYSIS - Common pitfalls

Electricity consumption questions have caused problems in the past, with sub- 50% mean marks produced in 2013, 2014 and 2015!

- Students must understand the kWh unit as a concept and be prepared for a multi-step calculation that is prone to silly errors - a revision focus area.
- We expect a similar question style for calorie and joule questions. i.e. conversion competency and multi-step calculation requirement.

Questions

1. FS Resources, 2UG 2017 HSC 16 MC

The benchmark for annual greenhouse gas emissions from the residential sector is 3292 kg of carbon dioxide per person per year.

A new building, planned to house 6 people, has been designed to achieve a 25% reduction on this benchmark.

What is the maximum amount of carbon dioxide per year, to the nearest kilogram, that this building is designed to emit when fully occupied?
A. 823 kg
B. 2469 kg
C. 4938 kg
D. 14814 kg

2. Measurement, STD2 M1 SM-Bank 13 MC

The table shows the average energy used, in kilojoules per kilogram of body mass, by a person walking for 30 minutes at different speeds.

Walking speed	Energy used in 30 minutes
$3 \mathrm{~km} / \mathrm{h}$	$5.53 \mathrm{~kJ} / \mathrm{kg}$
$5 \mathrm{~km} / \mathrm{h}$	$7.37 \mathrm{~kJ} / \mathrm{kg}$

Rob, who weighs 90 kg, drinks a large cappuccino made with full cream milk. It contains 146 kilocalories.

For approximately how long must Rob walk at $3 \mathrm{~km} / \mathrm{hr}$ to burn off the energy contained in the cappuccino? (1 kilocalorie)
A. 28 minutes
B. 37 minutes
C. 83 minutes
D. 110 minutes

3. FS Resources, 2UG 2014 HSC 20 MC

4 RAP Data - Bottom 18\%: School result (44\%) was 5\% above state average (39\%)
In a household of 4, each member uses an average of 13 minutes of hot water per day.
The household uses a 9 kW hot water unit.
Electricity is charged at $11.97 \mathrm{c} / \mathrm{kWh}$ when the hot water unit is being used
What is the electricity cost for the hot water used by this household in one week?
(A) $\$ 1.63$
(B) $\$ 6.54$
(C) $\$ 392.14$
(D) $\$ 653.56$

4. FS Resources, 2UG 2017 HSC 26a

ζ RAP Data - Bottom 12\%: School result (100\%) was 2\% above state average (98\%)
Electricity costs $\$ 0.27$ per kWh.
How much does 20 kWh cost? (1 mark)

5. FS Resources, 2UG 2016 HSC 28b

The cost of buying a new heater is $\$ 990$. It has an energy consumption of 505 kWh per year. Energy is charged at the rate of $\$ 0.35 \mathrm{kWh}$.

How much will it cost in total to purchase and then run this heater for five years? (2 marks)

6. Measurement, STD2 M1 SM-Bank 03

A 225-watt television is turned on for an average of 4 hours per day during off-peak periods for a week.
If the television is not running at any other time and electricity is charged at $\$ 0.36 / \mathrm{kWh}$ during offpeak, how much does it cost to run the television for a week? (2 marks)
7. Measurement, STD2 M1 SM-Bank 08

A cannon ball is made out of steel and has a diameter of 23 cm .
(i) Find the volume of the sphere in cubic centimetres (correct to 1 decimal place). (2 marks)
(ii) It is known that the mass of the steel used is 8.2 tonnes $/ \mathrm{m}^{3}$. Use this information to find the mass of the cannon ball to the nearest gram. (2 marks)

8. Measurement, 2UG 2018 HSC 28c

Every day, a 1200-watt microwave oven is used for 45 minutes at 40% power. Electricity is charged at $\$ 0.25$ per kWh.

What is the cost of running this microwave oven for 180 days? (3 marks)
9. Measurement, STD2 M1 SM-Bank 04

Steel rods are manufactured in the shape a equilateral triangular prisms.

(i) Find the volume of the prism (answer correct to 1 decimal place). (2 marks)
(ii) The mass of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$. Use this information to find the mass of the steel rod correct to the nearest gram. (2 marks)

10. Measurement, STD2 M1 SM-Bank 07

Oscar and Nadine select a meal each from the table below.

Meal Choice	Fat	Salt	Energy (Kilojoules)
Pizza (3 slices)	30 g	2500 mg	4384
Hamburger	40 g	1400 mg	5050
BBQ Chicken	32 g	1000 mg	3120
Lamb Souvlaki	20 g	NA	1872
Butter Chicken with Steamed rice	30 g	NA	2827
Lemon Chicken and Fried rice	40 g	NA	3611

Oscar has a hamburger and Nadine has the lamb souvlaki.
After dinner, Oscar goes for a run where he expends energy at $25 \mathrm{~kJ} /$ minute.
At the same time, Nadine goes for a brisk walk where she expends $12 \mathrm{~kJ} /$ minute
Who will expend the kilojoule intake from their dinner the quickest, and by how many minutes? (3 marks)

11. Measurement, STD2 M7 SM-Bank 01

Bikram runs a hot yoga studio.
If it costs 34 cents for 1-kilowatt (1000 watts) for 1 hour, how much does it cost him to run three 3200-watt heaters from 9:00 am to $12: 30 \mathrm{pm}$ on a single day? (Give your answer to the nearest cent) (2 marks)

12. Measurement, STD2 M1 SM-Bank 14

Cassius is a boxer and skips to keep fit.
The table below shows the average energy used, in kilojuoles per kilogram of body mass, by a person skipping for 10 minutes at different speeds.

Skipping speed	Energy used in 10 minutes
90 per minute	$16.23 \mathrm{~kJ} / \mathrm{kg}$
150 per minute	$24.18 \mathrm{~kJ} / \mathrm{kg}$

Cassius eats a hamburger that contains 550 kilocalories.
If Cassuis weighs 72 kilograms, how long must he skip at 150 skips per minute to burn off the energy contained in the hamburger? (1 kilocalorie $=4.184 \mathrm{~kJ}$) Give your answer to 1 decimal place. (3 marks)
13. FS Resources, 2UG 2013 HSC 26d

A section of Jim's electricity bill is shown.

Energy Used and Costs					
	THIS READING	LAST READING	ENERGY USED	RATE (per kWh)	COST
Peak Energy Charge					
TMV04221/01	531.2	274.8	256.4 kWh	47.7700 c	$\$ 122.48$
Shoulder Energy Charge					
TMV04221/02	A	560.9	523.5 kWh	19.4000 c	$\$ 101.56$
Off-peak (Night) Energy Charge					
TMV04221/03	242.5	0.0	242.5 kWh	9.6000 c	$\$ 23.28$

(i) What is the value of A ? (1 mark)
(ii) How much will Jim save if he uses 154 kWh of energy at the Off-peak rate rather than at the Peak rate? (2 marks)

Worked Solutions

1. FS Resources, 2UG 2017 HSC 16 MC

Benchmark emissions $=6 \times 3292$

$$
=19752 \mathrm{~kg}
$$

\therefore Max emissions of new building

$$
\begin{aligned}
& =75 \% \times 19752 \\
& =14814 \mathrm{~kg}
\end{aligned}
$$

$$
\Rightarrow \mathrm{D}
$$

2. Measurement, STD2 M1 SM-Bank 13 MC

Kilojoules in cappuccino

$$
=146 \times 4.184
$$

$$
=610.864
$$

\therefore Time of the walk

$$
\begin{aligned}
& =\frac{610.864}{(90 \times 5.53)} \times 30 \\
& =1.227 \ldots \times 30 \\
& =36.8 \ldots \text { minutes }
\end{aligned}
$$

$\Rightarrow \mathrm{B}$

3. FS Resources, 2UG 2014 HSC 20 MC

Usage per day $=4 \times 13=52 \mathrm{mins}$
Usage per week $=7 \times 52=364 \mathrm{mins}$

- Mean mark 39\%.

Converting to kWh
$=($ hours of usage $) \times 9 \mathrm{~kW}$
$=\frac{364}{60} \times 9$
$=54.6 \mathrm{kWh}$
\therefore Cost $=54.6 \times 11.97 \mathrm{c}$

$$
\approx 654 \mathrm{c}
$$

$$
\approx \$ 6.54
$$

$\Rightarrow B$
4. FS Resources, 2UG 2017 HSC 26a

$$
\begin{aligned}
\text { Cost } & =20 \times \$ 0.27 \\
& =\$ 5.40
\end{aligned}
$$

5. FS Resources, 2UG 2016 HSC 28b

Cost to run heater for 5 years

$$
\begin{aligned}
& =5 \times 505 \times 0.35 \\
& =\$ 883.75
\end{aligned}
$$

\therefore Total purchase and running cost

$$
\begin{aligned}
& =883.75+990 \\
& =\$ 1873.75
\end{aligned}
$$

6. Measurement, STD2 M1 SM-Bank 03

Total electricity used
$=7$ days $\times 4$ hours $\times 225$
$=7000$ watt hours
$=7 \mathrm{kWh}$
\therefore Running cost $=7 \times 0.36$

$$
=\$ 2.52
$$

7. Measurement, STD2 M1 SM-Bank 08
(i) Radius $=\frac{23}{2}=11.5 \mathrm{~cm}$

Volume $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times 11.5^{3} \\
& =6370.626 \ldots \\
& =6370.6 \mathrm{~cm}^{3} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) Convert m^{3} to cm^{3} :
$1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$

$$
=1000000 \mathrm{~cm}^{3}
$$

Convert 8.2 tonnes to grams:
8.2 tonnes $=8200 \mathrm{~kg}$

$$
=8200000 \mathrm{~g}
$$

\therefore Weight of cannon ball
$=6370.6 \times \frac{8200000}{1000000}$
$=52238.92$
$=52239$ grams

8. Measurement, 2UG 2018 HSC 28c

Daily usage $=1200 \times \frac{45}{60} \times 40 \%$

$$
=360 \mathrm{watts}
$$

180 day usage $=180 \times 360$

$$
\begin{aligned}
& =64800 \mathrm{watts} \\
& =64.8 \mathrm{~kW}
\end{aligned}
$$

\therefore Cost over 180 days $=64.8 \times 0.25$

$$
=\$ 16.20
$$

9. Measurement, STD2 M1 SM-Bank 04
(i) Area of triangular face (using sine rule)

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ} \\
& =43.301 \ldots
\end{aligned}
$$

Volume $=A h$

$$
\begin{aligned}
& =43.301 \ldots \times 80 \\
& =3464.10 \ldots \\
& =3464.1 \mathrm{~cm}^{3} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) Converting kg to g :
$7850 \mathrm{~kg}=7850000 \mathrm{~g}$

Converting m^{3} to cm^{3} :
$1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$

$$
=1000000 \mathrm{~cm}^{3}
$$

\therefore Weight of steel rod $=3464.1 \times \frac{7850000}{1000000}$

$$
=27193.185
$$

$$
=27193 \mathrm{~g} \text { (nearest gram) }
$$

10. Measurement, STD2 M1 SM-Bank 07

Oscar's kJ intake $=5050$
Time to work off $=\frac{5050}{25}$

$$
=202 \text { minutes }
$$

Nadine's intake $=1872$
Time to work off $=\frac{1872}{12}$

$$
=156 \text { minutes }
$$

$202-156=46$ minutes
\therefore Nadine will expend her dinner's kJ intake
in 46 minutes less than Oscar.

11. Measurement, STD2 M7 SM-Bank 01

Total energy usage

$$
\begin{aligned}
& =3 \times 3200 \times 3.5 \text { hours } \\
& =33600 \mathrm{watts}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Cost } & =\frac{33600}{1000} \times 0.34 \\
& =11.424 \\
& =\$ 11.42 \quad(\text { nearest cent })
\end{aligned}
$$

12. Measurement, STD2 M1 SM-Bank 14

Kilojoules in hamburger

$$
=550 \times 4.184
$$

$$
=2301.2
$$

\therefore Skipping time to burn energy

$$
\begin{aligned}
& =\frac{2301.2}{(72 \times 24.18)} \times 10 \\
& =1.321 \ldots \times 10 \\
& =13.2 \text { minutes (to } 1 \text { d.p.) }
\end{aligned}
$$

13. FS Resources, 2UG 2013 HSC 26d

(i) $A=$ Last reading + Energy used
$=560.9+523.5$
$=1084.4$
(ii) Cost at off-peak $=154 \times 9.6$

- Mean mark part (i) 43\% and part (ii) 46%.

$$
\begin{aligned}
& \quad=1478.4 \text { cents } \\
& \text { Cost at peak }=154 \times 47.77 \\
& =7356.58 \mathrm{cents} \\
& \begin{aligned}
\text { Saving } & =7356.58-1478.4 \\
= & 5878.18 \\
= & \$ 58.78 \text { (nearest cent) }
\end{aligned}
\end{aligned}
$$

14. FS Resources, 2UG 2015 HSC 30a

21 watts usage per computer per hour.
Watts used by 20 computers in 11 weeks

- Mean mark 49\%.
$=21 \times 20 \times 24 \times 7 \times 11$
$=776160 \mathrm{watts}$
$=776.16 \mathrm{~kW}$
\therefore Cost of energy
$=776.16 \times \$ 0.31$
$=\$ 240.6096$
$=\$ 240.61$ (nearest cent)
\therefore The school will save $\$ 240.61$ by switching off all the computers.

